
4

Technical Report No. g2-164
N68 18419

Free Oscillations of a Grauitatin 9

Solid Sphere

Russell E. Carr

Jp!T
CALIFORNIA

PROPULSION

INSTITUTE

LABORATORY

OF TECHNOLOGY

PASADENA, CALIFORNIA

September 25, 1961

--_ k_t _3



C.I_' _!_



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NO. NASW-6

Technical Report No. 32-164

Free Oscillations of a Grauitating

Solid Sphere

Russell E. Carr

n C. Porter, Chief

Research Analysis Section

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

September 25, 1961

C_-s_..c'.W



Copyright ® 1961

Jet Propulsion Laboratory

California Institute of Technology



JPL Technical Report No. 32-164

CONTENTS

Nomenclature ..............................................................................................................................................................

References ..................................................................................................................................................................

t. Introduction ...................................................................................................................................................... 1

II. Formulation of the Problem ............................................................................................................................ 3

Ill. Numerical Solution of the Problem ................................................................................................................ 18

IV. Some Aspects of the Solution for Free Spheroidal Oscillations .............................................................. 23

V. Concluding Remarks ........................................................................................................................................ 28

29

31

°.o
III





JPL Technical Report No. 32-164

ABSTRACT

The problem of determining the free oscillations

of a gravitating solid sphere is investigated. The problem

itself is formulated and, with the assumption of radial

symmetry in the structure of the sphere, the numerical

solution for the case of the toroidal oscillations is de-

scribed in detail. A formal description is given to indicate

the numerical solution of the problem of the spheroidal

oscillations.

I. INTRODUCTION

There has been considerable recent interest in the theoretical determination of the free oscillations

of the Earth. Seismic data obtained from the Chilean earthquake of 1960, as well as from the Kamchatka

earthquake of 1952, have been analyzed statistically to obtain an experimental determination of the free

oscillations of the Earth (Ref. 1). Correlation of these results with the theoretically calculated free
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oscillations corresponding to a number of hypothetical Earth models has afforded valuable information

regarding the probable internal structure of the Earth.

It is to be expected that many of the seismic techniques which have proved valuable for investigating

the Earth can, with some modification, be applied fruitfully to the investigation of the corresponding lunar

and planetary phenomena. It may be of particular interest to ascertain whether any of these bodies possess

a solid core. As a first step in such an investigation, it appears desirable to be able to determine the free

oscillations of a gravitating solid sphere.

Within the restriction that the assumed structure of the sphere has radial symmetry, there has been

prepared for the Jet Propulsion Laboratory IBM 7090 a program by which the toroidal oscillations of a

gravitating solid sphere can be computed. A program for computing the spheroidal oscillations is in progress.
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II. FORMULATION OF THE PROBLEM

The stress equations of small motion of any body for which the notion of stress is valid are given

by Love (Ref. 2) in rectangular coordinates

aX x OXy OX z c)2ux
--+ --+ + pX = p-

ax Oy c)z at 2

_}' OY OY 02u
x y z y

----+ + + pY= p--

Ox Oy Oz Ot2

(1)

aZ x OZ OZ 02u
y" z z

+--+ . pZ = p-

ax c)y Oz Ot2

where Ux, uy'

respectively.

and u
z denote the components of the displacement vector u in the x, y, and z directions

In the case of polar coordinates r, _), and ¢, the corresponding stress equations are (see Ref. 2, p. 91)

r"N

ar3 1 ar"_ 1 Or
-- + +

Or r 0_? r sin _ 0 q_

02u r
1 ,-, _ r-N ,.,

+ (2rr- -_b¢+ rScot F)) + pF r
r 0t 2

0_8 I asa 1 a8 ¢ 1
-- + + + --

Or r a_ r sin _ 0¢ r

r. r-N

[(0_-¢¢) cot_+ 3 r_9] +pF e-

02u 8

Ot 2

(2)

r-', r-_ r-_ 02u¢c)r¢ 1 08¢ 1 0¢¢ 1 "
-- + + + -- (3r¢ + 2 _¢ cotO) + pF¢ -

Or r O_ r sin _ a&' r 0t 2

where Ur, us, and u¢ denote the components of the displacement vector u in the r, O, and ¢ directions

respectively.
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In order to proceed further, some sort of stress-strain relationship must be postulated for the body.

Perhaps the simplest assumption is that the body is an isotropic elastic solid and that one may use Hooke's

law

dUx _aUx_Uy.)
X x = _.A + 2g , Yx = X = g --+

Ox Y _ Ox

aUy
CgUy = Z = g -- +

=_A+ 2g , Yz y
YY ay az

(3)

au. tau a,,.)Z z = S A + 2g , Z x = X z = I_ --+
cgz c_z ax

where

au x 3Uy au z
A _ + -- + _ V • u

ax ay az

(4)

If the medium is further assumed to be heterogeneous, so that X, g, and p are functions of position, then

substitution of Eq. (3) and (4) into (1) gives a result which can be expressed in the vector form

p m _

a2u

c_t2
pF + V [(_+g)V.u] +/_V2u - (V.u)_Y_t+ 2(Vg._) (5)

where

F - iX + iY +kZ (6)

and • is the symmetrical strain tensor with components
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_Lt
x

8x

-- 4- -- __

2 cgy 8x / 2 az

-- 4- -- -

ax /

__ -- 4- --

2 8y 8x

auy 1 BUy _u z

/Oy 2 Oz

-- - 4- -- + --

2 8z _x 2 az 8y 8z

If the isotropic elastic medium is assumed to be homogeneous, gq. (5) becomes

a2u
p--= pF + (;_+g)_Y(V.u)4-/_V2u

8t 2

(7)

In either Eq. (5) or (7), any effect of gravity must be accounted for in some manner in the body forces F:.

One approach to take in the treatment of the solid sphere with radial symmetry is to consider that

the sphere is made up of concentric spherical shells, each shell assumed to be homogeneous. Assigning

values to p, ;_, and ff in each shell, we then require that Eq. (7) be satisfied in each shell, that there be no

stress at the outer surface of the outer shell, and that stress components acting through the boundary and

displacements be continuous at the interfaces between shells. In the case of the toroidal oscillations there

is no radial displacement of the boundaries and, effectively, one may set the F: in Eq. (7) equal to zero.

The problem may then be approached using the theory of spherical harmonics (Ref. 3). The author first

attacked the case of the free toroidal oscillations of a radially symmetric solid sphere in this manner and

obtained a formal solution analogous to that obtained for the Earth (liquid core) by Gilbert and MacDonald

(Ref. 4). This solution is not documented in the present paper since the extension of their method to the

case of the spheroidal oscillations is not at all clear.

A more natural way to bring in the effect of gravity is to include it in the stress-strain assumptions.

A method, devised by l,ord Rayleigh (Ref. 5) and well elucidated by Love (Ref. 6), views the sphere as being

in a state of initial stress which is regarded as a hydrostatic pressure balancing the self-gravitation of the

body in the initial state; any subsequent displacement is considered to conform to the stress-strain relations

5
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8P 0 cgux
Xx = - PO + Ur -- + k A + 2 g

Or Ox

8po OuY
Yy = - Po + Ur + X A + 2 F

Or Oy

OP0 3u z

Zz = - PO + Ur + kz_ + 2g-
Or Oz

Oux Ouy 1Xy. = Yx = _ -- +

(8)

I Ou 8Uz 1Yz Zy tL Y= _ -- Jr -- _

Oz Oy /

Z
X Oux Ouz )= Xz =g --+

Oz Ox

where PO is the initial pressure.

Expressed in polar coordinates, the stress-strain relations (8) become

Opo
= - PO + Ur + X A + 2F err

Or

OPo
: - PO + ur + kA + 2 geO_

c)r

f..h

¢¢ : - PO + Ur

r_

rQ = g ero

r_ = I.t er¢

/4d F e84_

8P o

--+ _A + 2_e¢¢
8r

(8a)

6
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wh ere

e
rr

(_lt
r

Or

e08
1 Ou O Ur

r O(_ r

e¢ ¢

1 Ou¢

r sin 4 84

u_ u r
+ ---- cot (,! +

F r

itu _ u ¢9 l Ou r

e r (_ ...... +

Or r r 0(_

1 OUr c)u¢ u4_

er_ = __ _ +
r sin Z 8 4" Or r

esck

1 Ou_ u4_ 1 Ouo
cot {? + ......

r O_ r r sin ,_:_ O ,:_

OUr 2Ur 1 O 1 Ou 4_

- _ ---- + (u 8sin 0)4

c)r r r sin () O_ r sin {) 0¢

The body forces F are assumed derivable from a potential v such that

F : V v (9)

The initial pressure PO' the initial density PO' and the initial potential v O, all relating to the undisturbed

sphere, are then assumed to be only functions of r, the distance from the center of the sphere. The quantities

P0' _0' and v 0 are related by
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Ov 0 OP0

PO - 0
Ox Ox

Ov 0 OP0

Po - 0
Oy Oy

(10)

Ov0 Op0

Po - 0
Oz Oz

or

Ov0 OP0

PO - 0
Or Or

(10a)

In the strained state, the density is assumed given by

P = PO - Ur

OP o

Or

Po A (11)

and the potential v given by

V=Vo+W (12)

where

V 2 v 0 = - 4w GPo (13)

V2_ = 4rrG pO _ + ur
Or /

(14)

Note that if we write

go

Ov0

Or
(15)
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we can replace Eq. (10a) by

C_r

go Po
(lOb)

and Eq. (13) by

dg0 2
--- + -- go = 4w G P0

dr r

(13a)

Substituting Eq. (8) into Eq. (1), making use of (10), (10a), (11), and (12), and neglecting the products of

small quantities of the first order in ux, uy, u z, A, 1_:,and their derivatives, gives the following result

expressed in vector form:

P0
at 2

[(h+ g)V.u] +gV 2u- (V.-,)V/_+ 2(Vtt" q_)

( ( /V Vo + Po V W + V Ur P 0 --
- PoV'u + ur ar / ar /

(16)

If the medium is assumed to have _, g, and P0 constant, then Eq. (16) becomes

P0 v2 ( vo)-- = (X+g)V(V.u) + tt g- Po(V.u)Vvo + PoVW+Po u r
at 2 cgr

(17)

(It may be interesting to compare Eq. (5) and (7) with Eq. (16) and (17), respectively)

Of particular interest are the three scalar equations in polar coordinates corresponding to vector

equation (16). These scalar equations may be obtained by substituting Eq. (8a), (9), (10a), and (15) into

Eq. (2):
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PO

a2u
r 0_"

-- = Pogo A+ PO
0t 2 Or

PO (gO Ur) + _ + 2 g
Or Or Or

1 0
+ ---- (gero) +

r a8

1 0

r sin 8 0¢

# 2 eeo 2 +_er¢) + -- (4err- - e¢¢ cotSero)
r

(18)

P0

02Uo Po Ow 0 1 0

- + -- (Uero) +
Ot2 r 08 Or r O_

(-go POUr + XA + 2geo0 ) +

1 0

(_eo_)
r sin 8 0¢

g
+ -- 2 cot 0 - cot t_ + 3ero

r 08 r r sin 8 0qb /

(19)

P0

02u¢ PO

Ot2 r sin O

OW O 1 O
+ -- (#er¢)+ (#eo¢) +

O_ Or r O0

1 0

r sin 8 0¢
(-go Po Ur + _ +2ge¢¢)

3g 2#
-- ere + -- cotOeo¢

r r

(20)

The system of Eq. (13a), (14), (18), (19), and (20) is to be solved subject to the following boundary

conditions:

(i) _ r_ r'_= = r_b --- 0 at r = a + u
g

where a is the radius of the sphere before deformation;

(ii) The solution is to be regular at the center of the sphere;

(iii) The sphere's internal and external gravitational potentials and also their

respective gradients are continuous at r = a + ur.

10



Jpl Technical Report No. 32-164

If only the first-order terms in the small quantities %, u e, and u¢ are retained, the boundary

conditions (i) are met by putting

r

A + 2/_ 0 atr = a (21)
Or

er_ = ere = 0 atr = a
(22)

The boundary conditions (iii) are similarly met by

OF Oit's
It' = Ws, - 4wG P0Ur atr= a (23)

Or Or

The quantity It's , which denotes the gravitational potential outside the sphere, can be expressed by

W = _ a
$ n

n

W = _ a
8// n

n

s (_,¢)

r n +1

where Sn (8, ¢) is a spherical surface harmonic of positive integral degree n. Since each spherical harmonic

component Wsn satisfies

aWsn n + 1

_r r

W
sn

then Eq. (23) can be replaced by

OWn n + 1

-- + -- Wn = 4 ¢r G P o Urn
ar a

(23a)

where lr n and Urn are the nth spherical harmonic components of I_ and ur respectively.

11
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[Boundary conditions (ii) will be discussed subsequently.]

The remainder of our development will assume a radially symmetric sphere and will be confined to

two types of solutions suggested by the work of Hoskins (Ref. 7). In one type of solution, leading to the free

toroidal oscillations, we assume

u = 0
r

u 8 - e iat (24)

sin _ 0

u¢-

v(r) OSn (_, ¢)

sin _ O_

eiC_t

Note that Eq. (24) gives

5 = 0 (25)

Also, with the density remaining constant and no radial displacement of the boundaries,

W = 0 (26)

Substituting Eq. (24), (25), and (26) into Eq. (14), (18), (19), and (20), we find that Eq. (14) and (18) are

satisfied identically while Eq. (19) and (20) both give

(d2v 2 dv> dtl (dv v)I_ 2 n(n+l)/l 1
+ ---- + - + PO v = 0

\ dr2 r dr dr dr r r2

(27)

Boundary condition (21) is satisfied identically and boundary conditions (22) both give

dv v
0 atr= a

dr r

12
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The substitutions

Yl = v, drY2 = g dr v)
r

lead to the system of equations

dYl 1 1

--= --Yl + --Y2
dr r I_

dY 2

dr 3
/_(n 2 +n-2) - °'2pO Yl - -- Y2

r2 r

(28)

with boundary conditions

Y2 = 0 at r = a (29)

Yl is regular at r = 0 (30)

In the second type of solution, leading to the free spheroidal oscillations, we assume

u = U(r) Sr,(O,c_) e i_'t

u 8

as (0, _)
= V(r) e i_t

aO
(31)

u_

V(r) as (o,e)
_ eiCrt

We then find

A = X(r) Sn(O,_b) e icrt (32)

13
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where

X _

dU 2 n (n + 1)
+ -- U

dr r r

(33)

We then write

W ± P(r) Sn (0, fb) e i_t (34)

and, substituting Eq. (31), (32), (33), and (34) into Eq. (14), (18), (19), and (20), we obtain the following

system of equations:

0-2 P0 U+ PO -- + g0P0 X - PO (go U) + XX+ 2p
dr dr dr

+ -- 4r 4U+ n(n+ 1) U-r -- + 3 = 0
r2 dr dr

PO 0-2 Vr+ po P - go PO U+ XX+ r -- +
dr dr r

(35)

+ -- 5U + 3r V - 2n(n+l)
r dr

= 0

d2p 2 dP n(n+ 1) P 47r G (dPo U-- + =

dr 2 r dr r2 \ dr

Boundary condition (21) gives

dU
2X+ 2p--= 0

dr

at r = a (36)

14
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while boundary conditions (22) give

I dVdr

+ = 0

r

at r = (37)

Boundary conditions(23)give (see Eq. 23a)

dP n+ 1
+

dr a
-- P = 4wGp o U at r = a (38)

The substitutions

Yl = U

Y2 = X X + 2 F --

dU

dr

y3 = V

{ dV
Y4 = g I-

\ dr
+

r

(39)

Y5 = P

Y6 -

dP

dr

47rGPoU

15
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lead to the system of equations

dy 1 2_. Yl 1
-- +

dr (_.+ 2p) r (X+ 2g)
Y2 +

_n (n + 1) Y3

(k+ 2g) r

dY2 E c_2 pO r2 4 PO go +dr

Y2

r

+

n(n+ 1) Pogor -

2g(3k+ 2F)n (n +1)

(k+ 2/1)

-- + n(.+ 1)
Y4

r

Po Y6

dY3 Yl Y3 Y4
- + +

dr r r

m= go
dr

PO r -

2g(3_+2#) 7 Yl k Y2

(k+2tt) J r2 (_+2 F) r
(40)

-Po or2 r2 +
[£(2n 2+ 2n-l) + 2g(n 2+n- 1)]_ Y3 3Y4 PoY5

J r2 r r

dY 5

dr
--= 4 7r G Po Yl + Y6

dY 6

dr

4_ G Pon(n + l ) --
Y3

+ n(n + 1)
Y5 2Y6

r2 r

dg 0

dr

2

--+ --go
r

= 4_GPo

16
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with boundary conditions

Y2 = Y4 = 0

n+l
Y6 + Y5 = 0

a

at r = a (41)

and

The equation

YI' Y3' and Y5 are regular

go = 0

at r= 0

at r = 0

(42)

(43)

dg o

dr

2

--+ --go
r

= 4 _rG p0

with boundary condition (43) can be replaced by

i/0rgo (r) - 477G PO
r2

= 0

r2 dr for r > 0

for r = 0

(44)

The above formulation closely parallels that of Alterman, Jarosch, and Pekeris (Ref. 8), except that

they were concerned with a sphere with a liquid core. Since there can be no toroidal oscillations in a liquid

core, the condition of regularity at the origin did not have to be met in that case. The equations for the

spheroidal oscillations in the liquid core are easily obtainable from Eq. (40) by setting

/_ = 0, Y2 = _-x, Y4 = 0

and give rise to a set of four differential equations which include among the boundary conditions the require-

ment that Yl and Y5 be regular at the origin. Mterman, Jarosch, and Pekeris (Ref. 8) do not clarify the

manner in which the conditions of regularity were imposed in their numerical solution.

17
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III. NUMERICAL SOLUTION OF THE PROBLEM

The chosen method of solving the differential equations--which also satisfies the boundary

conditions--can be illustrated by a consideration of the case of the toroidal oscillations.

By introducing the variable x, where

h (45)

Eq. (28) becomes

dy 1 1 a

Yl + -- Y2
dx x /z

dY2 F /1(n2 + n - 2) 7 3

- L - a(y2 P0J Yl Y2dx ax 2 x

(46)

while boundary conditions (29) and (30) become

Y2 = 0 at x = 1 (47)

Yl is regular at x = 0 (48)

The condition of regularity at the origin means that in the neighborhood of the origin

Yl = xS (Ao + Al X +'"+ Ak Xk +"') (49)

where

A 0 _ 0ands > 0 (50)

18
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From Eq. (46), it is seen that

# tdYl Yl 1Y2 = --
(51)

If we now assume that within a sufficiently close neighborhood of the origin g and P0 are constant, say

g = #' P0 = _- for x _ h 1
(52)

then we find that the second equation of Eq. (46), along with conditions (50), requires that as long as

n_l,

S" = n (53)

(_)-52  2)t

A2l = (2g-)/l!(2n+3)(2n+ 5)..- (2n+ 2l+ 1)

21+1 = 0

A 0

(54)

forl= 1, 2, 3,...

Then, as long as n _ 1, we have within a close neighborhood of the origin (say, for x < h <_ h 1)

Yl = AO xn

Y2

[ 1 /a2  ,2)2 (2n + 3) #

+ ... + (-1) t

2 ll!(2n+ 3)(2n+ 5)... (2n+ 21+ 1)

A 0 _ x n-1 (n - 1) (n + 1) a 2 _2x2

a 2 (2n + 3)

(n + 2l- 1)
+ ... + (- 1) /

2 tl. r(2n+ 3)(2n+ 5)... (2n+2l+ 1)

l a2 -_ cr2 x2 t I 1
-- + ....

#

(55)

19
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which will be abbreviated as

Yl

Y2

: Ao fl (x)

: Ao f2 (,0

(56)

for x < h.

In the case that n = 1 we see that the set of differential equations (46) is replaced by

dy 1 1 a

- Yl + -- Y2

dx x #

dy 2 3

- a c_2 PO Yl Y2

dx x

(46a)

In this case we obtain

s = 1

(_ 7 a2 _2)t
A2l = A o

(2#-) / l.' (5) (7) ... (2/+ 3)

A21 = 0

for l = 1, 2, 3, .-., so that Eq. (53), (54), (55), and (56) also hold for n = 1.

Since the differential equations (46) are linear, their solution for 0 < x < 1, when the initial

conditions are

Yl = a, Y2 = 0 at x = 1 (57)

2O
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is given by

where Yl = Y_ (x), Y2

Yl = a Yl

Y2 = a yI (x)

(58)

= yI (x) is the solution to Eq. (46) which is obtained by using the initial conditions

Yl = 1, Y2 = 0 at x = 1 (59)

Because of boundary condition (47), we know that our initial conditions must be of the form of Eq.

(57) and, assuming our solution is non-trivial, a "_ 0.

_lithin the radius of convergence of the power series (55), it is required that the solutions match.

Thus, corresponding to a given a _ 0, there is a value of//0 such that

y_ (h) = Ao f_ (h)

y_ (h) = Ao f2 (h)

(60)

In order that a non-trivial solution exist, Eq. (60) necessitate that for a given non-negative integral value of

n, the value of cr must make the following determinant vanish:

y[ (h) (h)

yl2 (h) f2 (h)

(61)

For each value of n there is a discrete set of values of cr which make the determinant (61) vanish. These

sets of values might be referred to as the toroidal frequency spectrum of the structure, where the structure is

defined once P0 and g have been assigned as functions of x and the value of a has been given. The values

of c- which make the determinant vanish will occasionally be referred to as the eigenvalues.

21
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Given a structure, the existing JPL IBM 7090 program is capable of generating monotonically the

toroidal frequency spectrum for assigned n and the specified number of eigenvalues desired. The solution for

Yl and Y2 for each eigenvalue, corresponding to the initial conditions (59), is obtained for the interval

O<h2AxAl

where the value of h2 is specified and where it is assumed that h2 < h; the functions Yl and Y2 may be

automatically plotted if desired. As an example, with p and p assumed constant, the first 20 eigenvalues

for a = 2 required approximately 20 minutes of machine time for computation. For each eigenvalue, the

approach is to converge in on a sequence of approximations for o-, halving the sum of the previous approx-

imations which makes the determinant (61) change sign. The process is terminated when the values of the

approximation are unchanged up to a specified number of significant figures.

A similar program is being planned to calculate the spheroidal frequency spectrum for an assumed

structure. The approach being followed is similar to that used in the toroidal case, but the problem is more

complicated.

22
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IV. SOME ASPECTS OF THE SOLUTION FOR FREE SPHEROIDAL OSCILLATIONS

Introducing the variable x as defined by Eq. (45), the system of differential equations for the radial

component of the spheroidal oscillations may be written as

dy 1 2X Yl a X.n(n+ 1) Y3
- --+ Y2 +

dx (X+ 2g) x (k+ 2g) (k+ 2//) x

(62)

dy 2dx - I-
cr2poa2X2-4Po_oaX +

4//(3 _+ 2g)] Yl 4ga Y2

(k+2//) J x 2 (k+2//) x

n (n + 1) PO gO ax -

2//(3/_+ 2//)n (n + 1)

(k+ 2//)
Y3x 2

+ n(n+l) a
Y4

PO a2 Y6
Y(,

(63)

elY3 Yl Y3 aY4
- + +

dx x x //

(64)

- go PO ax -
dx

2//(3)_+ 2//) 1 Yl \a Y2

(_+ 2//) J x 2 (_+ 2//) x

PO o-2a2 x2 + I Y3 3aY4 PO a2y5[\(2n 2 + 2n- 1)+ 2//(n 2+ n- 1) _" x 2 x ax

(65)

1 dy 5

a dx
4rrG PoYl + Y6

(66)

23
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d_

4rr G PO

Y3 n(n+ 1) Y5 2Y6
n(n + 1) -- +

x a x 2 x
(67)

where

1/oX- 477 G Po
go x2

a x2 dx for x > 0

0 for x = 0

(68)

The boundary conditions for the system are

n+l

Y2 = Y4 = 0 , Y6 + -- Y5 = 0 at x = 1 (69)

YI' Y3' and Y5 are regular at x = 0 (7O)

To meet the conditions of regularity (Eq. 70), we assume that in the neighborhood of the origin

Yl = xr (AO+ AlX +'"+ Ak xk +''')

Y3 = xs (BO + B lX+"" + B k x k +...) (71)

Y5
_ x t (Co+ ClX+...+ Ckxk +...)

G

where

AoBoCo _ 0, r > 0, s > 0, t > 0
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Using Eq. (62), (64), and (66) respectively to define aY2, ay 4 and Y6 in terms of Yl' Y3' Y5/a and

their first-order derivatives, we find on substituting Eq. (71) into Eq. (63), (65), and (67) that

r = s = n - 1 , t = n (72)

The assumption that _, #, and PO are constant within a small neighborhood of the origin, say

k = k , g = g , P0 = p for x < h 1 (73)

leads to

4
go = -- 7_ G'p a x for x < h1

3

(74)

Substituting Eq. (71) into Eq. (63), (65), and (67) and making use of Eq. (72), (73), and (74) leads to

the following set of equations which permit determination of A k, B k, and Ck as linear functions of A O, B 2 ,

and CO:

1
B o -- A o

t/,

(75)

A I = B l = C 1 = 0 (76)

[(. + 3) _+ (,, + 5) _] A2 = [(n 2+n)_+ (n 2-n-2) g'] B 2

Ao 4
-o -2 _ a 2- + -- 7"rG p-2a2A 0 - _a 2C O

n 3

(77)
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A2I+I = B2/+I = C2I+I = 0 for l = t, 2, 3,.-. (78)

{ [(n + 2l + 1)(n + 2l- 2)] _ + [2(n + 2/)(n + 2l - 1) - n(n + 1) - 4] _- ) A2l

- { [(n+2/- 2)_+ (n+ 2/- 4) /_ ]} n(n+ ]) B21

= - A 2l-2 + p 2 a2+ ia 2 n(n+ 1) B2l_ 2

- { p-a 2 (n + 21- 2)} C2l_ 2 (79)

{(n+ 2l+ 1)-_+ (n+2l+ 3) _-} A2l- {In(n+ 1)] _+ In(n+ 1)-(2/- 1)(2n+ 2/)] _-} B2l

(_ 7rG _-2a 2) (_-cr2a 2) _ (fi-a 2)= /I 2l-2 - B2l-2 C2l-2

for l = 2, 3,...

m

2l(2n + 2l+ 1) C21 = 477 G p [(n + 2l+ 1) A2l - n(n + 1) B21] for l = 1, 2, 3, .-- (8O)

In a formal fashion, then, we may write for

x< h< h

Yl(X) = A 0 fl(x) ÷ B 2 gl (x) + C0h 1 (x)

Y2(x) = A 0 /2(x) + B 2 g2 (x) +

Y3 (x) = Aof3(x) + B2 g3 (x) +

Y4(X) = Ao[4(x) + B2g4(x) +

YS (x) = A0 f5 (x) + B 2 g5 (x) +

Y6 (x) = AO]'6 (x) + B2 g6 (x) +

CO h2 (x)

C O h3 (x)

C O h 4 (x)

CO h 5 (x)

CO h6 (x)

(81)
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where, for any specified value of x < h the 18 values of

ix) , g/(x) , hi(x) ij = 1,2,...,6)

are capable of being determined.

The most general solution to the system of differential equations (61) through (66) which satisfies

the boundary conditions (69) is given by

Yl = Ctl yll ix) a :_'2 y_I (x) + cz3 ylllI (x)

Y3 = _IY_ix) + c_2 y_I (x) + ct 3 y_ll (x)

Y4 Ctl yI(x) + ct2 yI4I ix) + cc3 yI4ll (x)

Y5 _ C_l yl(x) + cc2 yl5I (x) + ct 3yIll (x)

= ct yI61(x) + cc3 yIII (x)Y6 _1 yI6(x) _ 2

i82)

I (x), |I (x), I11 (x); j _ 1 2, -.. 6, are the respective solutions to the system ofwhere the functions yj yj yj , ,

differential equations when the values of (Yl" Y2' Y3' Y4' 3'5' Y6 ) atx = 1 are taken to be (1, 0,0, 0,0, 0),

(0,0, 1,0, 0,07, and i0,0,0,0, 1, - In+ 1J/a).

Imposing the condition that the solution to the system of differential equations must match the

power series expansions at x = h, we obtain the eigenvalues for cr by requiring that the determinant
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y_y_ y_Ir_ _2h2

y_y_ y_'r_ _3h3

y_y_ y_Ir_ g4 '4

y_y_ y_Ir_ _5h_

yl6 yII yIII f6 g6 h6

must vanish at x = h.

Subsequently, the corresponding values of a2/a 1 and a3/a 1 can be determined and representative

solutions YI' Y2' "'" ' Y6 can be generated, at least in the interval (h < x < 1), by solving the system of

differential equations with the initial conditions

a 2 a 3 n + 1 a 3 \
1,0, --,0, )a 1 a 1 a a 1

V. CONCLUDING REMARKS

A future report is planned to give more detail on the program for computing the spheroidal oscillations.

If the numerical solution for the case of the liquid-core sphere is not forthcoming from those who have solved

the problem, a future report will be planned to cover this problem.
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NOMENCLATURE

a

A k

F

go

G

i,j,k

Po

P

r

$

s.

t

UX_ U,_ U z

Ur, U_, U b

u

U

,(r)

V (r)

W

W
$

X

X,Y,Z

radius of sphere before deformation

kth Frobenius coefficient

body forces

gravitational acceleration

gravitational constant

unit vectors in x, y, and z directions

initial pressure

defined by Eq. (34)

distance from center of sphere (polar coordinate system)

indicial constant

spherical surface harmonic

time

components of u in x, y, and z directions

components of u in r, 8, and _ directions

displacement vector

defined by Eq. (31)

defined by Eq. (24)

defined by Eq. (31)

perturbation of gravitational potential of sphere

gravitational potential outside sphere

dimensionless radius

defined by Eq. (33)

components of the body forces
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NOMENCLATURE (Cont'd)

A

#

P

Po

O"

¢

¢

V

defined by Eq. (4)

polar coordinate

elastic constant

Hgidity

density

initial density

frequency

polar coordinate

symmetrical strain tensor

gradient operator

3O
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